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Abstract

The main subject of this paper is the analysis of an arbitrarily-shaped, triplate ferrite planar circuit.

The term “analysis” denotes here the determination of the circuit parameters of the equivalent multiport. It is

shown that a computer analysis based upon a contour–integral solution of the wave equation offers an efficient
tool in the design of the ferrite planar circuit. Examples of this analysis are also described.

1. Introduction
The ferrite planar circuit to be discu sed in

?
general in this paper is the planar circuit using
ferrite slabs as dielectric material , magnetized
perpendicular to the ground conductors. The plansr

circuit is defined as an electrical circuit having

dimensions comparable to the wavelength in two direc-
tions, but much less thickness in one direction.

Therefore, the electromagnetic fields with no variation

in one direction are considered in the planar circuit.

From thiscirculator~Oint of view, not only the stripline
consisting of a disk-shaped resonator3but

also the periphery mode(edge–guided mode) devices ,
which essentially require wide striplines and then have
always tapered sections, are considered to be included
in this circuit category.

The main subject of this paper is the analysis of

an arbitrarily–shaped, triplate ferrite planar circuit.

The term “analysis” denotes here the determination of

the circuit parameters of the equivalent multiport. It

is shown that a computer analysis based upon a contour-
integral solution of the wave equation offers an

efficient tool in the design of the ferrite planar

circuit. Examples of this analysis are also described.

2. Basic Equation
The model to be considered is aa follows. An

arbitrarily-shaped, thin conducting center plate is
sandwiched by two ferrite slabs magnetized perpendicular
to the conducting plate and assumed to be excited

symmetrically with respect to the upper and lower ground

conductors. There are several coupling ports as shown

in Fig.1 and the rest of the periphery is assumed to be

open-circuited. The xy coordinates and the z axis,

respectively, are set parallel and perpendicular to the

conductors.

When the spacing d is much smaller than the wave–
length and the ferrite substrates filling the apace is
homogeneous and linear, only the field components Ez,
Hx and Hy with no variation along the z aXiS are

considered. It is deduced directly from Maxwell’s
equation that the following equation dominates the
electromagnetic fields in the ferrite planar circuit.

( VT2 +A@v=o (1)

where

Here V denotes the rf voltage of the center conductor
with respect to the ground conductors. The effective

permeability UZff- is given by u and K which are the
diagonal and off-diagonal coefficients of permeability

tensor for magnetization in the z direction. The sign
of p .fj depends both on the operation frequency and on

the internal magnetic field.
At a coupling port, the

tion must hold:

following boundary condi-

(2)

where in is the surface current density normal to the
periphery C and a/’h and a/3t, respectively, are the

normal and tangential derivatives on C.
At most of the periphery where the coupling ports

are absent, no current is assumed to flow at the edge of

the center conductor in the direction normal to the edge,

that is, in=O. Actually, however, the fringing magnetic

fields are always present. A simple correction for it
is to expand the periphery outwards by 0.447dXK (K=O.4)

in advance of the analysis. The coefficient K was

determined by comparing the measured resonant frequencies
for the various ferrite planar resonators with the

theoretical values, which were computed by the Ray:eigh-
Ritz variational method* assuming that the circuits were

lossless. As an example, the magnetically tuning char-
acteristics of a square resonator are shown in Fig.2.
It is shown in Fig.2 that if the effects of fringing
fields are taken into account as indicated previously,

the measured resonant frequencies are in good agreement

with the calculated values especially above ferromagnetic
resonance because the higher the applied magnetic field,

the smaller the influence of the magnetic loss. The
computed amplitude and phase distribution of the proper

rf voltage in the square resonator are also shown in Fig.

3 for the fundamental mode. The field patterns are found

to be rotating to the right with time as are in the disk
resonator. It is also found that when ue~<O, the fields
are somewhat concentrated along the periphery.

3. Computer Analysis
lJhen we introduce the Green’s function G, the rf

voltage Vp at a point P in the circuit is given by a

line integral:

Vp=JC{-jwueffdinG + v(j~~ - ~)}dt (3)

We should uae the different types of the Green’s

functions for Eq.(1) according to the sign of ~,f~ .
When U<ti>O, G=H~)(kr)/4j ia used as the freespace

Green’s function. From Eq.(3) the rf voltage at a point
upon the periphery is found to satisfy the following
equation.

(21
VM=#fC{jUPeff- dHo (kr) (-in)

[2)
+k(cos13-j~sin6)Hl (kr)VL}dt (4)

In this equation H%) and H:) are the zeroth order nnd

first order Hankel functions of the second kind,

* polynomial approximation was used for the functional

I given by

I=ffD(lVTV\ 2-W2CpcW lV\2)dS + j~fcV*~ dt

which has its stationary condition(Euler equational (1)

and

j~~+~ =0 on c
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respectively. The variable r denotes distance between
points M and L represented by s and SO, respectively,

and 6 denotes the angle made by the straight line from

point M to point L and the normal at point L as shown in

Fig.1. If the current density injected upon the periph-

ery is known, Eq. (4) becomes a second kind Fredholm
integral equation in terms of the rf voltage.

For numerical calculation we divide the periphery

into N incremental sections and set N sampling points

at the center of each section as shown in Fig.4. When
we assume that the magnetic and electric field inten-
sities are constant over each width of the sections, the

above integral equation results in a matrix equation:

N N
~ ~ij = E hij (i=l,2, . ..N) (5)

j =1 j =1

where
(2)

~ij=&ij-T!fw {cos8-jfisinf3}H1 (kr)dtj
3j

(6)

+d~IWj H~2)(kr) dt j ( i+j )

hij ={

%d{l.~(log~-l+y)} (i=j)
n

Y=0.5772. ..: Euler’s constant

and Ij=-2inWj represents the total current flowing into
the j-th port. The formulas uij and hij in Eq.(6) have

been derived assuming that the i-th section is straight.
From the above relations, the impedance matrix of the

equivalent N-port is obtained as

z, = U-lH (7)

where U–l denotes the inverse matrix to U. Then, the

element of the impedance matrix is given as

1 :::
‘ij = =U :::

(8)

When the circuit has not coupling port, detU=O gives the

resonant frequency.

When uew<O, G=(Ko(hr)+jmIo(hr))/2r may be a suit–

able Green’s function for Eq.(1), where :J=oJ= and 10
and KO is the zeroth order modified Bessel functions of
the first and second kind, respectively. In this case

the elements of matrices U and H in Eq.(7) are found to
be

~ij=6ij-~fw (cos6-j&in6 )( K1-.jm Il)dt
j

ju~etid 1
~—f .(KO+jmIO)dt

211 Wj WJ
(&j )

hij ={

ju;;ffd{ (log~~-l)-j.}
(i=j )

(9)

4. Examples of Analysis

As examples of the computer analysis, the resonant
frequencies of a disk-shaped circuit were computed first
for the check of the computation accuracy. Since detU=O
is never realized for real frequency due to the computa–

tion error, we define the frequency which gives the
minimum of I detU ) as the eigenvalue. The variation of

ldetUl is shown as a function of frequency F(GHZ) in
Fig.5 for pcff>O, which shows the first(F=4.35), the

second(F=5.31), the third(F=6.05) and the fourth(6.85)
minima. The calculated eigenvalues were compared with

the theoretical values which should be given by the
roots of

KnJn(ka)_o
Jn’(ka)-i-- - (n=O, +1, +2.-.)

KnIn(ha)=oIn’(ha)-;~ (n=l, 2 . ..)

(lo)

and then it was verified that the computation errors
were within 2.0 per cent for the number of the sampling

points N=33.

Next, the characteristic of the Y-junction strip-

line circulator were computed as shown in Fig.6. The

circulator performance in Fig.6 is for the above ferro-
magnetic resonance point of circulation. Here the
internal magnetic field is 3700 Oe and N=33. At this

applied magnetic field, the resonant frequencies of +1
and –1 modes are 5.5GHZ and 4.9GHZ, respectively, which

shows that the frequency of operation is not midway
between +1 and –1 mode resonant frequencies but out of

the region. This is believed due to the operation far

from the degeneracy of +1 modes, that is, a greater

separation of the modes, and the great influence of

higher modes which results from the heavy coupling to

the striplines.
Fig.7 shows the rf voltage distribution along the

periphery at the center frequency in the circulator

performance for N=33. The solid and broken curves show

the relative magnitude and phase of the rf voltage along
the periphery, respectively. The distribution of the
amplitude is not sinusoidal, as might be expected, with
much shallower minimum between the input and output
ports and a greater distortion in the vicinity of the
ports.

5. Conclusion

We have presented the computer analysis based upon

a contour-integral equation of an arbitrarily-shaped

ferrite planar circuit. It is expected in the future

that such an approach will be useful in the design and

analysis of microwave integrated circuits on ferrite

substrates. Furthermore, we add that the circuit param-
eters of the ferrite planar circuit can be also deter–

mined in general by expanding the rf voltage in terms of

orthonomal eigenfunctions. However, such an analysis
based upon eigenfunction expansion has been omitted in
this paper for space limitations and will be reported
elsewhere.
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Fig.1 Center conductor of a ferrite planar circuit

and symbols used in the integral equation.
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SAMPLING POINTS

3

Fig.2 Symbols used in the computer analysis.

AMPLITUDE
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Fig.4 Computed distr~bution of the rf voltage in the

sauare resonator for the fundamental mode. Equal—.
amplitude(upper) and phase(lower) lines are shown

for (a) u++>O, the applied magnetic field ‘0=

1300 Oe and (b) ~e+f~o> HO=2300 Oe.
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Fig.3 Magnetically tuning characteristics of a square
resonator. The broken curve were calculated by
the polynomial approximation of order 5, taking

the effects of fringing fields into account.-.
The ferromagnetic substrates of the saturation

magnetization 4iTMs=1300Gauss, the linewidth AH=

68 Oe and the dielectric constant c=15.6 were

used in the experiment.
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Fig.5 The variation of )detUlas a function of frequency
of a disk-shaped circuit for N=33 whew peff>O.
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Fig.7 Computed rf voltage distribution along the periph-

Fig.6 Computed performance of a stripline Y-junction
ery of the stripline circulator at the center

circulator coupled by striplines of 50 ohm at frequency in the performance shown m Fig.6.

the above resonance point of circulation for N=33. Solid curve indicates the amplitude given in
arbitrary unit and broken curve is the phase line.
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