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Abstract

The main subject of this paper is the analysis of an arbitrarily-shaped, triplate ferrite planar circuit.
The term '"analysis'" denotes here the determination of the circuit parameters of the equivalent multiport. It is
shown that a computer analysis based upon a contour-integral solution of the wave equation offers an efficient
tool in the design of the ferrite planar circuit. Examples of this analysis are also described.

1. Introduction

The ferrite planar circuit to be discugsed in
general in this paper is the planar circuit™ using
ferrite slabs as dielectric material, magnetized
perpendicular to the ground conductors. The planar
circuit is defined as an electrical circuit having
dimensions comparable to the wavelength in two direc-
tions, but much less thickness in one direction.
Therefore, the electromagnetic fields with no variation
in one direction are considered in the planar circuit.
From this point of view, not only the stripline
circulator” consisting of a disk-shaped resonator but
also the periphery mode(edge-guided mode) devices™,
which essentially require wide striplines and then have
always tapered sections, are considered to be included
in this circuit category.

The main subject of this paper is the analysis of
an arbitrarily-shaped, triplate ferrite planar circuit.
The term "analysis" denotes here the determination of
the circuit parameters of the equivalent multiport. It
is shown that a computer analysis based upon a contour—
integral solution of the wave equation offers an
efficient tool in the design of the ferrite planar
circuit. Examples of this analysis are also described.

2. Basic Equation

The model to be considered is as follows. An
arbitrarily-shaped, thin conducting center plate is
sandwiched by two ferrite slabs magnetized perpendicular
to the conducting plate and assumed to be excited
symmetrically with respect to the upper and lower ground
conductors. There are several coupling ports as shown
in Fig.l and the rest of the periphery is assumed to be
open-circuited. The xy coordinates and the z axis,
respectively, are set parallel and perpendicular to the
conductors.

When the spacing d is much smaller than the wave-
length and the ferrite substrates filling the space is
homogeneous and linear, only the field components E,,

Hy; and Hy with no variation along the z axis are
considered. It is deduced directly from Maxwell's
equation that the following equation dominates the
electromagnetic fields in the ferrite planar circuit.
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Here V denotes the rf voltage of the center conductor
with respect to the ground conductors. The effective
permeability pety is given by u and k which are the
diagonal and off-diagonal coefficients of permeability
tensor for magnetization in the 2z direction. The sign
of wetr depends both on the operation frequency and on
the internal magnetic field.

At a coupling port, the following boundary condi-
tion must hold:
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where ip is the surface current density normal to the
periphery C and 3/3n and 3/dt, respectively, are the
normal and tangential derivatives on C.

At most of the periphery where the coupling ports
are absent, no current is assumed to flow at the edge of
the center conductor in the direction normal to the edge,
that is, iy=0. Actually, however, the fringing magnetic
fields are always present. A simple correction for it
is to expand the periphery outwards by 0.447d*K (K=0.4)
in advance of the analysis. The coefficient K was
determined by comparing the measured resonant frequencies
for the various ferrite planar resonators with the
theoretical values, which were computed by the Rayleigh-
Ritz variational method* assuming that the circuits were
lossless. As an example, the magnetically tuning char-
acteristics of a square resonator are shown in Fig.2.

It is shown in Fig.2 that if the effects of fringing
fields are taken into account as indicated previously,
the measured resonant frequencies are in good agreement
with the calculated values especially above ferrimagnetic
resonance because the higher the applied magnetic field,
the smaller the influence of the magnetic loss. The
computed amplitude and phase distribution of the proper
rf voltage in the square resonator are also shown in Fig.
3 for the fundamental mode. The field patterns are found
to be rotating to the right with time as are in the disk
resonator. It is also found that when pept< 0, the fields
are somewhat concentrated along the periphery.

3. Computer Analysis

llhen we introduce the Green's function G, the rf
voltage Vp at a point P in the circuit is given by a
line integral:
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We should use the different types of the Green's
functions for Eq.(l) according to the sign of uesr .
When uex> 0, G=H§2(kr)/4j is used as the freespace
Green's function. From Eq.(3) the rf voltage at a point
upon the periphery is found to satisfy the following
equation.
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In this equation Hén and H;” are the zeroth order and
first order Hankel functions of the second kind,

* Polynomial approximation was used for the functional
I given by
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respectively. The variable r denotes distance between
points M and L represented by s and s, respectively,
and 6 denotes the angle made by the straight line from
point M to point L and the normal at point L as shown in
Fig.l. If the current density injected upon the periph-
ery is known, Eq.(4) becomes a second kind Fredholm
integral equation in terms of the rf voltage.

For numerical calculation we divide the periphery
into N incremental sections and set N sampling points
at the center of each section as shown in Fig.4. When
we assume that the magnetic and electric field inten-
sities are constant over each width of the sections, the
above integral equation results in a matrix equation:
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v=0.5772-++: Euler's constant
and Ij=-2ipW; represents the total current flowing into
the j-th port. The formulas ujj and hij in Eq. (6) have
been derived assuming that the i-th section is straight.
From the above relations, the impedance matrix of the
equivalent N-port is obtained as
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where U~l denotes the inverse matrix to U. Then, the
element of the impedance matrix is given as
i
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When the circuit has not coupling port, detU=0 gives the
resonant frequency.

When et < 0, G=(Ko(hr)+inls(hr))/2r may be a suit-
able Green's function for Eq.(1), where h=w/e|pett| and Tg
and Ko is the zeroth order modified Bessel functions of
the first and second kind, respectively. In this case
the elements of matrices U and H in Eq.(7) are found to
be
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4. Examples of Analysis

As examples of the computer analysis, the resonant
frequencies of a disk-shaped circuit were computed first
for the check of the computation accuracy. Since detU=0
is never realized for real frequency due to the computa-
tion error, we define the frequency which gives the
minimum of | detU| as the eigenvalue. The variation of
fdetU!| is shown as a function of frequency F(GH;) in
Fig.5 for uet >0, which shows the first(F=4.35), the
second(F=5.31), the third(F=6.05) and the fourth(6.85)
minima. The calculated eigenvalues were compared with
the theoretical values which should be given by the
roots of
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and then it was verified that the computation errors
were within 2.0 per cent for the number of the sampling
points N=33,

Next, the characteristics of the Y-junction strip-
line circulator were computed as shown in Fig.6. The
circulator performance in Fig.6 is for the above ferri-
magnetic resonance point of circulation. Here the
internal magnetic field is 3700 Oe and N=33. At this
applied magnetic field, the resonant frequencies of +1
and -1 modes are 5.5GH; and 4.9GH;, respectively, which
shows that the frequency of operation is not midway
between +1 and -1 mode resonant frequencies but out of
the region. This is believed due to the operation far
from the degeneracy of *1 modes, that is, a greater
separation of the modes, and the great influence of
higher modes which results from the heavy coupling to
the striplines.

Fig.7 shows the rf voltage distribution along the
periphery at the center frequency in the circulator
performance for N=33. The solid and broken curves show
the relative magnitude and phase of the rf voltage along
the periphery, respectively. The distribution of the
amplitude is not sinusoidal, as might be expected, with
much shallower minimum between the input and output
ports and a greater distortion in the vicinity of the
ports.

5. Conclusion

We have presented the computer analysis based upon
a contour-integral equation of an arbitrarily-shaped
ferrite planar circuit. It is expected in the future
that such an approach will be useful in the design and
analysis of microwave integrated circuits on ferrite
substrates. Furthermore, we add that the circuit param-
eters of the ferrite planar circuit can be also deter-
mined in general by expanding the rf voltage in terms of
orthonomal eigenfunctions. However, such an analysis
based upon eigenfunction expansion has been omitted in
this paper for space limitations and will be reported
elsewhere.
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Fig.l Center conductor of a ferrite planar circuit
and symbols used in the integral equation.
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Fig.2
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Symbols used in the computer analysis.

(a) veyt>0 (b) Wesp& 0

Fig.4 Computed distribution of the rf voltage in the

square resonator for the fundamental mode. Equal
amplitude (upper) and phase(lower) lines are shown
for (a) et >0, the applied magnetic field Hp=
1300 Oe and (b) uers< 0, Ho=2300 Oe.
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Fig.6 Computed performance of a stripline Y~junction

circulator coupled by striplines of 50 ohm at
the above resonance point of circulation for N=33.
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Fig.3 Magnetically tuning characteristics of a square
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resonator. The broken curve were calculated by
the polynomial approximation of order 5, taking
the effects of fringing fields into account.
The ferrimagnetic substrates of the saturation
magnetization 4mMg=1300Gauss, the linewidth AH=
68 Oe and the dielectric constant e=15.6 were
used in the experiment.
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Fig.5 The variation of JdetUl as a function of frequency
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of a disk-shaped circuit for N=33 when Ueff>0-
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Computed rf voltage distribution along the periph-
ery of the stripline circulator at the center
frequency in the performance shown in Fig.6.

Solid curve indicates the amplitude given in
arbitrary unit and broken curve is the phase line.



